
ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1616

Application of Formal Analysis Techniques for

Monolithic Application Source Code Analysis

Asfa Praveen
1
, Shamimul Qamar

2
, Shahanawaj Ahamad

3

Ph.D. (Computer Sc.) Research Scholar, Faculty of Science & Technology, Shri Venkateshwara University, Gajraula, (U.P.), India1

Professor of Electronics & Computer Engineering, Noida Institute of Engineering & Technology, Greater Noida, (U.P.), India2

Assistant Professor, Dept. of Comp. Sc. & Software Engg, College of Computer Sc. & Engineering, University of Ha‟il, K.S.A3

Abstract: For the development of monolithic legacy applications to fulfil the updating requirements and further maintenance work,

the programs of legacy has to be analyses thoroughly with many aspects and to achieve many intended objectives as SOA based

migration of monolithic legacy software though service orientation of program and its related environment with services. In this

direction, the legacy source code analysis is one the beginning task after assets assessment, this paper is intended to present some of

the applied techniques for analysis of program features and source code, with maintaining the aspect of design recovery.

Keywords: Monolithic Application, Program Analysis, Legacy, Source Code, Concept Analysis.

I. INTRODUCTION

Many issues make monolithic application source code too

difficult to understand and maintenance tasks hard to

perform. The work presented here combines three

techniques, with the goal to achieve on their entire

strengths and overcoming their shortcomings. Program

representation formalism which is called Lattice of

Concept Slices and program modularization techniques is

to separate statements in a code fragment as per the

concept implemented. The goal of applications of analysis

techniques is to achieve modularization because modules

are self-contained, free from any side effect and the

duplicate code is less. A domain concept is a structural

pattern, uses of a variable, call to a method, regular

expression matching on variable naming etc in analysis.

This modularization procedure is illustrated with the help

of an example C program. Analysis techniques such as

concept assignment, formal concept analysis, and program

slicing have largely been applied and used by reengineers

for program modularization. The study has undertaken for

their role in analysis and way of implementations.

II. CONCEPT ASSIGNMENT

Biggerstaff [1] presented the Concept Assignment

problem for the identification of human oriented domain

concepts for assigning them to implementation oriented

source code within a program. There are two methods for

identifying domain concepts: (i) the structural analysis (ii)

the probable reasoning.

Parsing techniques is the basis for structural analysis and

the domain concept is defined as a structural pattern, and

is based on use of variables, calls to methods etc. The

source code is parsed to match the signature of the pattern

then matching lines of source code are considered to be

incorporated part of domain concept. The atomic concepts

are recognized in early stage first and then concepts are

identified.

Probable reasoning is based on informal information,

heuristics, thumb rules, weight of build up proof and so

forth, many examples based studies have shown that

systems of probable reasoning is based on concept

assignment [2] with domain model which works as an

adaptive observer [1]. The process uses a knowledge base

that contains a list of domain concepts implemented in the

program and their indicators. The indicators can be

identifiers, keywords, comments, regular expressions etc.

In the hypothesis generation stage the source code is taken

as input and scanned through to generate hypotheses of

domain concepts and based on the knowledge base. The

hypotheses are then sorted by the indicator position in the

source code. In the segmentation stage the sorted

hypotheses are analysed to group them into segments

using an unsupervised competitive learning neural

network. The output of the stage is a collection of

segments each containing a number of hypotheses. In the

concept binding stage the segments hypotheses are

analysed to identify the most evident concept. The

http://www.ijarcce.com/

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1617

segments are then labelled with their corresponding

domain concepts. Code segments corresponding to the

domain concepts are candidates for modules.

III. PROGRAM SLICING

Slicing as originally described by Weiser [3] is an

abstraction of a program based on a particular behaviour.

A slice is defined to be an executable subset of the

original program that preserves the original behaviour of

the program with respect to a slicing criteria <P, V>,

which is a given variable V at a given program point P.

The slice will consist of all the statements of the program

that may affect the value of V at point P. The original

slicing algorithm was based on statement deletion using

data flow analysis. More widely used algorithms [4], [9]

work on the Dependence Graph of the program. First, a

program dependence graph (PDG) [5], [6] is created for

the program at hand. Some additional nodes are inserted

at the start of the PDG to correspond to the initial

definitions of all variables used in the program without

first being defined and at the end to correspond to the final

uses of all the variables. The algorithm starts by traversing

the PDG from the node to the program point P and then

traces back to all the nodes that has a direct or indirect

control or data flow dependency on this node. All the

visited nodes are marked. All the unmarked nodes are

deleted. The program has resulting PDG is the computed

slice. This type of slicing is known as static intra-

procedural slicing. [7], [8] gives a comprehensive list of

all the slicing variations and techniques. Slicing has the

advantage that the slices are self contained and executable

by themselves. But the problem of slicing is that the

decomposition is done based on very fine-grained

program variables instead of domain concepts.

Modularization based on slicing may result into modules

that contain a significant amount of duplicated code

because of overlapping control flows. Moreover, even

though each of the decompositions is self-contained, if the

duplicated code modifies global program resources it may

cause significant and undesirable side effects when

deployed in separate modules.

IV. FORMAL CONCEPT ANALYSIS

Formal Concept Analysis is a mathematical tool used for

identifying groupings of objects that have common

attributes and representing them in a lattice structure to

show the generalization specialization relationship among

the groups. Concept analysis starts with a context (O, A,

R), a binary relation R between a set of objects O and their

attributes A. A concept C (E, I) is a maximal collection of

objects E (the extent) sharing common attributes I (the

intent). A concept C1 (E1, I1) is a sub-concept of another

concept C2 (E2, I2) if E1 E2 or equivalently I2 I1.

The sub-concept relation is a partial order relationship that

forms a lattice over the set of the concepts, each of the

nodes of the lattice being a concept. For the infimum of

the lattice the intent is empty and the extent contains all

the objects, whereas for the supremum the intent contains

all the attributes and the extent is empty. Concepts in the

lattice are then grouped together depending on the

relationships among Concept analysis has been used as a

data analysis method in other disciplines for a while.

In software engineering its applications include program

understanding, automatic modularization of legacy [12],

detection of configuration interference, class hierarchy

transformation [10] and, source code restructuring [11]. In

modularization, instead of decomposition concept analysis

is used to identify grouping of program elements into

modules. For example it is used to group together

subroutines and global data structures into ADTs for

object-oriented migration. As a result this technique is not

directly applicable to the type modularization which is the

main interested.

V. LATTICE OF CONCEPT SLICES

Program representation formalism is proposed now that is

called the Lattice of Concept Slices. Based on this

representation, modularization techniques are proposed in

the next section. The goal is to achieve a modularization

from monolithic such that each module implements

preferably a single domain concept, each module is self-

contained, there is minimal duplication in code and there

is no side effect among modules The formation of the

lattice is a three-stage process (i) domain concept

identification, (ii) computation of concept slices and

finally, (iii) building and analysing the lattice.

VI. APPLICATION FOR IDENTIFICATION OF

DOMAIN CONCEPTS

The first step is the identification of domain concepts in

the program. This can be done using exhaustive concept

assignment techniques. A simpler approach of structural

and informal analysis of the source code is applied. In the

approach the developer provides a list of domain concepts

that are taken from the functional specifications of the

system and are implemented in the given program then

associates such domain concepts with one or more

program elements such as variables and structural idioms

in the source code.

The associations may be based on the use or def of a

particular data type or variable, call to a procedure or

method, a particular variable passed as parameter in a call,

http://www.ijarcce.com/

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1618

expressions matching on identifier naming or comments

etc. These associations cannot be by no means exhaustive

and only serve as a starting point of the analysis. In

addition, the software engineer identifies some statements

as key statements [13] that are believed to contribute the

most in the computation of that domain concept.

1: #include <stdio.h>

2: #define YES 1

3: #define NO 2

4: void main()

5: {

6: int nl = 0;

7: int nw = 0;

8: int nc = 0;

9: int inword = NO;

10: int c = getchar();

11: while (c!=EOF)

12: {

13: char ch = (char) c;

14: nc = nc + 1;

15: if (ch=='\n')

16: nl = nl + 1;

17: if (ch==' ' || ch=='\n' || ch=='\t')

18: inword = NO;

19: else if (inword == NO)

20: {

21: inword = YES;

22: nw = nw + 1;}

23: c = getchar();

}

24: printf("%d \n", nl);

25: printf("%d \n", nw);

26: printf("%d \n", nc);

}

Fig. 1: Line count program

Some domain concepts can be identified automatically

based on a set of general criteria. The rationale behind the

criteria is that any information being sent outside from the

program or any change in the internal state that is

externally visible are information that will be used by

other parts of the program and hence are candidates for

being part of a domain concept. Such criteria can be the

identifiers such as return parameters of a function or

method, modified formal parameters that have been called

by reference, variables in output/print statements, global

variables or class attributes been modified. These

identifiers are candidates for domain concepts and the

statements that modify these identifiers will be considered

as part of the corresponding domain concept. The

software engineer may accept or reject the suggestions

made automatically.

The outcome of this step is a set of domain concepts and

associated with each of them is a set of program

statements that implement the concept, where some of the

statements are marked as key statements. Each of the

concepts is a candidate to form a possible module

associated statements will comprise the statements for the

module. As an illustration of the technique consider Fig. 1

that illustrates a simple line count program taken from [15]

that counts the number of lines, words and characters in a

text file and attempting to modularize main function. The

function outputs the calculation results of three variables –

nl, nw and nc statement 24, 25 and 26 respectively. Hence

the automatic identification technique suggests the

possible presence of three domain concepts corresponding

to these three variables. The software engineer confirms

the suggestion and names the domain concepts as Lines,

Words and Chars respectively. The nl variable is being

computed in statement number 6 and 16. Statement 6 is

the declaration and initialization and does not directly

contribute to the computation of nl, whereas Statement 16

is the place where the main computation is being done. In

this respect the Lines domain concept consists of

statement 6, 16 and 24, where statement 16 is the key

statement.

Table 1 shows the list of domain concepts identified in

this step and the statements associated with each of them.

In addition to the domain knowledge used by the software

engineer to collect the significant variables that are

believed to be associated with a specific domain concept,

other semi-automated techniques can be also used. These

include data mining, cohesion metrics, and data usage

analysis [14].

Table 1: The Domain Concepts

Domain Concepts Statements

Lines 6,16,24

Words 7,22,25

Chars 8,14,26

VII. CONCLUSION

Monolithic application updating is an issue from various

aspects; this paper presented implementation reviews

upon the very stable and applied source code analysis

techniques, program slicing, concept assignment, formal

concept analysis. The work has presented an example case

for application of them with implications, which have

suggested and shown how these techniques can be

incorporated for maintaining and restructuring of

monolithic legacy program.

http://www.ijarcce.com/

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1619

REFERENCES

[1] Ted J. Biggerstaff, Bharat G. Mitbander and Dallas Webstar; “The
Concept Assignment Problem in Program Understanding‟, Proceedings

of the 15th International Conference on Software Engineering. May 1993.

[2] Nicolas Gold and Keith Bennett; “Hypothesis-based Concept
Assignment in Software Maintenance”,IEEE Proceedings on Software.

August 2002.

[3] Mark Weiser; “Program Slicing”, IEEE Transactions on Software
Engineering, July 1984.

[4] Susan Horwitz, Thomas Reps and David Binkley; “Inter-procedural

Slicing using Program Dependence Graphs”, ACM Transactions on
Programming Languages and Systems (TOPLAS), Volume 12 Issue 1,

January 1990.

[5] Jeanne Ferrante, Karl J. Ottenstein and Joe D. Warren; “The Program
Dependence Graph and Its Use in Optimization”, ACM Transactions on

Programming Languages and Systems, July 1987.

[6] Susan Horwitz and Thomas Reps; “The Use of Program Dependence
Graphs in Software Engineering”, Proceedings of the 14th International

Conference on Software Engineering, May 1992.

[7] Frank Tip; “A Survey on Program Slicing Techniques”, Journal of
programming languages, 1995.

[8] Andera De Lucia; “Program Slicing: Methods and Application”,

Proceedings of First IEEE International Workshop on Source Code
Analysis and Manipulation, November 2001.

[9] K.J Ottenstein and L.M. Ottenstein; “The Program Dependence

Graph in a Software Development Environment”, Proceedings of the
ACM Software Engineering Symposium on Practical Software

Development Environments. April, 1984.

[10] G. Snelting; “Software Reengineering based on Concept Lattices”,
Proceedings of the Fourth European Conference on Software

Maintenance and Reengineering, March 2000.
[11] G. Antoniol, G. Casazza, M. di Penta and E. Merlo; “A method to

re-organize legacy systems via concept analysis”, Proceedings. 9th

International Workshop on Program Comprehension, May 2001.
[12] M. Siff and T. Reps; “Identifying Modules via Concept Analysis”,

IEEE Transactions on Software Engineering, Volume 25 Issue 6.

November 1999.
[13]Mark Harman, Nicolas Gold, Rob Hierons and Dave Binkley; “Code

Extraction Algorithms which Unify Slicing and Concept Assignment”

Proceedings of Ninth Working Conference on Reverse Engineering,
October 2002.

[14] K. Sartipi, K. Kontogiannis; “A User-assisted Approach to

Component Clustering”, In Journal ofSoftware Maintenance: Research
and Practice.

[15] Keith B. Gallagher and James R. Lyle; “Using Program Slicing in

Software Maintenance”, IEEE Transactions on Software Engineering,
Volume 17 Issue 8, August 1991.

BIOGRAPHIES

Asfa Praveen has six years of experience with good

practical, academic and research projects exposures after

completion of three years Master of Computer

Applications (M.C.A.) degree in year 2007 from Punjab

Technical University, Jalandhar with very good grades;

Advanced „A‟ level (P.G.) Diploma in Computer Science

in year 2003 from Department of Electronics, Ministry of

I.T., Govt. of India; Oracle Certified Professional (O.C.P.)

Examination in year 2003 from Oracle Corporation,

U.S.A.; she is currently pursuing Ph.D. in Computer

Science from Faculty of Science & Technology of Shri

Venkateshwara University, Gajraula, (U.P.), her area of

research includes Service Oriented Reengineering of

Monolithic Legacy Software.

Prof. (Dr.) Shamimul Qamar has sixteen years of wide

experience in research, academics and administration,

held various positions as Director, Professor, Consultants

in universities and engineering colleges after completion

of Ph.D. in Electronics and Computer Engineering from

Indian Institute of Technology (I.I.T.) Roorkee with

excellent grade; he has completed B.Sc. from Ch. Charan

Singh University, Meerut; Bachelor of Engineering (B.E.)

in Electronics & Communication Engineering from

Madan Mohan Malviya Engineering College, Gorakhpur

in the year 1996; M.Tech. (Information & Communication

Systems) from Aligarh Muslim University, Aligarh; he

has published more than 35 research papers in his credits

and supervised many master projects and Ph.D. thesis;

currently he is designated as Professor of Electronics and

Computer Engineering in Noida Institute of Engineering

and Technology, Mahamaya Technical University, Noida,

U.P. (Delhi-N.C.R.), India.

Dr. Shahanawaj Ahamad is an active academician and

researcher in the field of Computer Science, Software

Reverse Engineering with twelve years of research and

academic experience including five years in abroad,

working with College of Computer Science &

Engineering of University of Ha‟il, K.S.A., before joining

UoH he has worked with King Saud University, Al-Khraj

University of K.S.A. and Shobhit University, Meerut

(Delhi-NCR) and Uttar Pradesh Technical University of

INDIA as HoD-I.T., Assistant Professor etc. He is

professional member of British Computer Society, U.K.,

senior member of Computer Society of India, including

membership of various national and international

academic and research organizations, member of research

journal editorial board and reviewer. He is currently

working on Service-Oriented Migration, Multi Agent

System Reverse Engineering, published more than twenty

five research articles in his credit in national and

international journals and conference proceedings. He

holds M.Tech. followed by Ph.D. in Computer Science

with specialization in Software Engineering from Jamia

Millia Islamia Central University, New Delhi, India. He

has supervised many bachelor projects, master and Ph.D.

dissertations.

http://www.ijarcce.com/

